Про персонализированную медицину
[img]http://l-stat.livejournal.net/img/userinfo.gif?v=17080?v=145.10[/img]myaus1 спрашивает об успехах и перспективах персонализированной медицины.
Запишу тут вкратце что я по этому поводу думаю. Успехи пока очень скромные. Перспективы очень большие, но в довольно отдаленные.
На данный момент персонализированная медицина в основном сводится к применению к конкретному человеку неких корреляций, найденных на популяционном уровне. Например, эпидемиологические данные могут показывать, что люди с геном Х заболевшие болезнью Y имеют повышенный риск осложнения Z. Соответственно, если мы видим человек с геном Х заболевшего болезнью Y, то мы делаем вывод, что у него повышенный риск осложнения Z. Строго говоря, подобный вывод является логической ошибкой, известной как ecological fallacy. Иллюстрируют это обычно следующим примером: Если вы знаете, что ученики школы X берут первые места на математических олимпиадах, то будет ошибкой автоматически считать, что встреченный вами ученик школы X непременно хорошо знает математику. Более того, вполне возможна ситуация, когда случайно-выбранный ученик из школы X хуже знает математику чем случайно-выбранный ученик из другой школы, например если учителя в ней фокусируются на обучении небольшой горстки отличников, а остальные дети не получают ничего.
Фотка для привлечения внимания
Некоторые разбирающиеся в вопросе люди, говорят (pdf) что хотя формально это и логическая ошибка, но тем не менее подобный подход может быть полезен. Допустим это так. Следующая проблема заключается в том, что эффекты для обнаружения которых требуется популяционное исследование, по определению являются не очень большими в абсолютных значениях. Нам не нужно изучать тысячи людей для того, чтобы выяснить, что парашют спасает жизнь выпрыгнувшему из самолета. Снижение риска инфаркта в два раза звучит внушительно, но на практике это может быть разница между одним и двумя инфарктами на сто тысяч человек. В масштабах всей популяции разница может быть значительной, но для каждого конкретного человека польза не очень велика.
Возьмем наверно самый известный пример персонализированной медицины - лечение рака груди у женщин с повышенной экспрессией гена HER2 (особо агрессивная форма рака груди). Для этих женщин существует лекарство Herceptin, которое вот в этом исследование увеличило шансы прожить 4 года без болезни с 72% до 79%. Результат статистически-достоверный, но не сказать чтобы сногосшибающий. Для конкретного пациента, я бы сказал что основная польза от персонализации медицины в данном случае заключается в том, что если у женщины нет повышенной экспрессии HER2, то это лекарство ей даже и пробовать не стоит.
Пропоненты персонализированной медицины часто говорят, что вышеописанные проблемы связаны в первую очередь с тем, что до сих пор у нас не было возможности собирать достаточно информации для того, чтобы сделать подобные предсказания достаточно аккуратными. Я не знаю, может они и правы, но интуитивно мне кажется, что проблем от таких big data анализов по крайней мере в ближайшем будущем будет больше, чем пользы. Чем сложнее анализ, тем сложнее оценить его надежность и тем труднее применить его на практике врачу.
Где "персонализированная медицина" (в кавычках, потому что обычно это так не называют) на сегодняшний день наиболее успешна, так это в пренатальной диагностике и предотвращении некоторых генетических заболеваний, то есть там, где эффект очень велик в абсолютных цифрах и где относительно неплохо известен механизм нарушения и существует очень эффективный способ предотвращения эффектов (прерывание беременности). Когда персонализированная медицина начнет не просто опираться на корреляции, а начнет позволять понимание проблемы каждого конкретного пациента на уровне биологических механизмов, тогда от нее будет колоссальный эффект. Но на данный момент это лежит в очень отстраненном будущем.
Источник:
Новости науки
http://novostinauki.ru/news/131217/
Источник: Вконтакте
Источник: Одноклассники
Источник: Facebook
Новости науки
http://novostinauki.ru/news/131217/
Источник: Вконтакте
Источник: Одноклассники
Источник: Facebook
Похожие публикации
Новости науки и техники в 2018 году - на это стоит посмотреть и прочитать
Наука уже сейчас преобладает над техникой, и так должно быть всегда! Ведь для того чтобы техника была полезна, нужны знания по науке. Вообще наука - это специфическое название практически всех сфер деятельности человечества, это может быть: генетика, психология, социология, виктимология, астрофизика, химия и так далее. Если углубляться и далее - просто это надест перечислять. Одним словом - наука она везде! Что же касается техники. Техника, всегда была к призыву оптимизации человеческого труда, но в тоже время труд можно и разделить как на умственный, так и физический. Но тем не менее существовать техника без науки, так же как наука без техники невозможна.Новости которые представлены здесь как раз о науке и технике 2018 году. Они способны расширить ваши границы понимания и утверждения жизни в целом. Ведь не за столетиями и человек возможно научиться преобладать над наукой, не прибегая уже к технике. В любом случае - эти новости про науку и технику интересны сами собой, поэтому читайте и поражайтесь ими.